
Multi-Robot Search and Rescue

Anaam Mostafiz, Harshil Shah, Siddharth Jain and Tabsheer Askari

Abstract— This project deals with the use of a Potential-
Field Based Control algorithm in conjunction with a Frontier
Exploration Algorithm for decentralized mapping of unknown
areas using quadcopter swarms. By mapping with a front-facing
RGB depth camera, the drones can be used for search and
rescue applications where identifying survivors and types of
obstacles while exploring is critical.

I. INTRODUCTION

A. Motivation

In recent years, advances in robot architecture, onboard
sensing capabilities, and processing power have allowed the
deployment of unmanned vehicles to various environments
that are inhospitable for humans. This inhospitability may be
due to the danger these environments pose to humans, or their
remote nature. Post-earthquake urban environments pose
both of these dangers. Therefore, robotic swarms are ideal for
search and rescue operations in such environments. The robot
swarms used in our project consist of quad-copters since
they are readily available and have high maneuverability in
unstructured urban environments.

B. Related Works

The Potential-Field based control strategy was first intro-
duced by Khatib [1] and has since been used to provide
strategies for an array of multi-agent deployment challenges,
such as obstacle avoidance, goal/frontier seeking, robot-robot
collision avoidance, and diffusive behavior of the collective
(swarm). These strategies, when combined, allow for the
fulfillment of more complex collective goals, such as mobile
sensor deployment [2], multi-robot exploration & mapping,
and swarm pattern generation [3].

C. Our Proposed Solution

Perhaps one of the biggest advantages of the Potential-
Field based control strategy is its decentralized nature, which
allows for robustness to individual agent failure (which is to
be accounted for in unsafe workspaces), and scalability of the
deployment. However, without careful design, Potential-Field
algorithms have a tendency to trap agents in local minima in
non-convex environments, which means complete mapping
is not guaranteed.

Renzaglia et al. [4] proposed a leader-trooper model that
guarantees convergence using frontier exploration, where the
leader robot runs a classic path-planning algorithm instead
of potential-field so that it can repel the trooper robots out
of local minima. Taking inspiration from their approach, in
this project we implement the Potential-Field control archi-
tecture for efficient and safe multi-agent motion planning
and mapping in an unknown environment. We will use the

Frontier Algorithm to intermittently assign our agents new
(unexplored) goals to be attracted to.

The key feature of our approach is that each drone’s 2D
laser will be filtered to the same front field-of-view as an
RGB depth camera, so that the drone only maps what the
camera sees. Meanwhile, the unfiltered 2D laser range will
be used for obstacle detection and avoidance. Together, these
strategies will encourage the swarm to capture 3D color
information of the environment from a variety of angles. As
a result, rescuers will have a 2D map, a 3D map, and camera
images to assist their efforts.

II. MATHEMATICAL MODEL
Our solution uses a swarm of homogeneous quadcopters.

Quadcopters were chosen for their holonomic drive mech-
anism (as opposed to differential drive robots that cannot
move omnidirectionally), as well as their ability to avoid
ground obstacles altogether by flying.

A. Problem Formulation

We consider an unknown 3-dimensional environment. We
suppose each of our robots has a limited radius, omnidirec-
tional laser sensor for mapping & obstacle avoidance, and a
front-facing RGB depth camera to capture the footage of the
mapped area. The latter will make it easier to detect/identify
victims after mapping is complete.

Like Renzaglia et al. [4], our goal is to map the whole en-
vironment. A point in the workspace is considered explored
if a robot comes closer to the point than the robot’s sensing
range.

B. Leader Robot

One of the robots in our swarm will be a leader. This robot
will be unaffected by the potential field the other robots will
experience. The leader will use a path-planning algorithm
such as Dijkstra’s or A-star to go the the nearest frontier.
This will bypass the problem of robots getting stuck in local
minima caused by non-convex obstacles (See Section III-B
for further details).

C. Trooper Robots Model

The agents (other than the leader) in our system are
characterized by a series of attractive and repulsive forces on
each of the agents, which dictate their motion. These forces
arise from an artificial potential field that consists of:

• Repulsion from the other agents;
• Repulsion from closest obstacle;
• Attraction to goals (Frontiers of Exploration).
All potential-field equations and system model equations

have been adopted from Renzaglia et al. [4].



1) Repulsive Potential: The repulsive potential is defined
as:

Urep(q,qi) =

{
1
2krep(

1
ρ(q) −

1
ρ0
)2 , ρ(q) ≤ ρ0

0 , ρ(q) > ρ0
(1)

where qi is the position of the robot/obstacle, ρ(q) = ∥q−
qi∥, and ρ0 is the range in which the potential field is defined
to be non-zero. The force generated by this potential field is
Frep(q) = −∇U(q):

Frep(q,qi) =

{
krep(

1
ρ(q) −

1
ρ0
)q−qi

ρ3(q) , ρ(q) ≤ ρ0

0 , ρ(q) > ρ0
(2)

Therefore, each robot of the N total robots in the swarm
experiences a total repulsive force of:

Frep(q) =

N∑
i=1

Frep(q,qi) (3)

where we sum over the other N − 1 agents and the nearest
obstacle. We consider ρobstacle0 ≪ ρrobot0 since the robot-
obstacle threshold only needs to be large enough to avoid
collision, but the robot-robot distance needs to be large
enough to make the agents disperse away from one another
for better coverage.

2) Attractive Potential: The attractive potential we use is
defined as:

Uatt(q) =
1

4
katt ρ

4
goal (4)

and the resultant attractive force as:

Fatt(q) = katt(qgoal − q)ρ2goal (5)

where ρgoal = ∥q− qgoal∥ and qgoal is the midpoint of the
frontier. Furthermore, we add a viscous term to the system,
v q̇, that causes energy dissipation and allows the system to
reach equilibrium (see Section III-A for proof). Therefore,
the equation of motion for each agent is:

Ftot = Frep + Fatt = mq̈− vq̇ (6)

where m is the virtual mass of the robot and is taken to be
unitary.

D. Assumptions and Constraints

The assumptions and constraints of our implementation
are as follows:

• Sensing - 2D laser with 360 degree range and 9 meter
distance, and an RGB depth camera with a 60 degree
field of view and 9 meter distance.

• Global Communication: Communication was consid-
ered global, for the sake of simplicity. In future work,
limited communication range and its effect on the
mapping speed can be explored.

• Decentralized Control: to make the system scalable and
robust to failures.

• Bounded environment: in a real-world disaster mapping
scenario, you need to define search limits. We are
physically putting up boundary walls for our domain
to mimic this.

• only working at a particular height (2D) due to limited
onboard computational capabilities. 3D navigation was
out of the scope of this project - may be pursued in
future work.

• Our Environment contains obstacles, as any post-
disaster environment would.

• Mathematical model of collective behavior: potential
fields [4][5], frontier algorithm which sets frontiers
(boundaries between explored and unexplored regions
of the domain), that the robots attract to.

III. THEORETICAL ANALYSIS

A. System Convergence

Given a system of N robots, the total Potential Energy of
the system, U , is given by:

U =

N∑
i=1

[Uatt,i + Urep,i] (7)

The total Kinetic Energy of the system is given by:

T =

N∑
i=1

1

2
miq̇i

2 (8)

The sum of these gives the total system energy:

E = U + T (9)

In order to find the time evolution of the system, we take
the time derivative of the total energy dE

dt . This is naturally
the sum of the rates of change of the kinetic and potential
energies:

dE

dt
=

dU

dt
+

dT

dt
(10)

Since the Equation of Motion for the system contains a
viscous force term, which acts to remove energy from the
system, we consider the system to be dissipative in nature
[5].

Considering a state of the system in a finite domain with
a fixed set of frontiers (attractors), the system has a finite
amount of potential energy. The change in potential energy
for this setup is given by [5]:

dU

dt
= −

N∑
i=1

Ftot,i q̇i (11)

The change in kinetic energy for the system is equal and
opposite to the change in potential energy minus the viscous
term [5]:

dT

dt
=

N∑
i=1

(Ftot,i q̇i − vq̇i
2) (12)

Computing the resultant dE
dt , we get:



dE

dt
=

dU

dt
+

dT

dt

⇒ dE

dt
= −

N∑
i=1

Ftot,i q̇i +

N∑
i=1

(Ftot,i q̇i − vq̇i
2)

⇒ dE

dt
= −v

N∑
i=1

q̇i
2

Therefore, we can see that the energy of the system
decreases over time.

It is important to note that once our agents explore the
current set of frontiers, this will give rise to a new set of
frontiers, adding fresh potential energy to the system. The
system will have a new equilibrium at this point and will
try to attain this new equilibrium. This will keep repeating,
however, since our domain is bounded, there is only a finite
number of new frontiers that can be given rise to before all
the points in the domain have been explored. In other words,
there is only a bounded, finite amount of potential energy that
can be added to the system via exploration. Once no more
frontiers remain, the system Potential Field will not change
further, and according to the results given above, the agents
will converge to rest.

B. Robots Trapped in Local Minima

However, without a leader drone (that would be unaffected
by local minima), there exists a possibility that one of our
agents gets stuck in a local minima. This could happen for
various reasons, such as a case where the attractive force
from the frontier is equal and opposite to the repulsion from
the nearest obstacle and other drones. Figure 1 illustrates
such a case. In this situation, the forces on the drone are
such that:

Ftot = Frep + Fatt =

[
Fx

0

]

Fig. 1: Drone stuck at minima.

Any movement in the positive y direction will cause the
net force on the drone to act in the negative y direction,

pushing it down. Any movement in the negative y direction
will cause the net force on the drone to act in the positive
y direction, pushing it up. The side walls of the obstacle
prevent any escape through motion in the x direction. In
such a scenario, the robot is completely dependent on other
robots in the swarm to explore the frontier, updating the
Potential-Field and even then, there is no guarantee that the
new potential field would not also have this point as a local
minimum.

In order to prevent such situations in non-convex environ-
ments, it is necessary to have a leader drone that is unaffected
by such local minima.

IV. VALIDATION IN SIMULATIONS

A. Python

First, we wrote Python graphical simulations to test the
potential field algorithms. Robots are represented by colored
dots, and the map is a cellular grid with randomized ob-
stacles. After the robots spread out to local minima with
repulsion only, they attract to the frontiers of the grid by
moving one cell at a time while avoiding the coordinates of
other robots.

(a)

(b)

Fig. 2: (a) Initial positions of robots in Python, (b) Robots
spread out to local minima

B. Gazebo

Then, we developed a more realistic simulation in Gazebo
using ROS. The key package being used is Real-Time
Appearance-Based Mapping (RTAB-Map), which simultane-
ously collects 2D maps, 3D maps, and images [6]. These
maps were not merged in real-time by the swarm in order
to encourage detailed and exhaustive mapping of the 3D
space. Furthermore, RTAB-Map can merge stored maps from



Fig. 3: Robot exploration trajectories in a random map in
Python

Fig. 4: Frontiers remaining over time in Python

different sessions using loop closures, or multiple image
captures with a high-number of repeated features, so the
mapping redundancy could be useful for post-exploration
merging in the real world. However, Gazebo environments
do not have anywhere as much detail as the real world, so
it was difficult to test the increase in loop closures.

For algorithm testing, a small, simple "sphere" world was
created and a large, detailed maze world was borrowed
[7]. Additionally, the drone models were borrowed [8] and
the navigation stack package [9] was used to implement
path-planning and navigation with the leader drone. Due
to computational limitations, only one leader drone and
two trooper drones were used, although our code could be
expanded and possibly more effective with a larger number
of drones.

We wrote ROS Python code to implement the potential
fields and frontier selection, which uses frontier detection
code inspired by the rrt-exploration package [10]. Since the
drones have odometry, their global positions were known and
broadcast to each other as a way to differentiate between
obstacles and drones in range. However, the drones do
not know what frontiers the others are exploring, so to
encourage separation the drones can be initially spread out
using the pure repulsive potential field. For exploration, the
trooper drones move omnidirectionally, only rotating to a
random angle while selecting the next frontier to mix up
the camera angles. A rotation matrix had to be used on the
calculated forces since potential field algorithms normally
do not consider the orientation of the robot. Meanwhile,
the leader drone was allowed to move like a differential-
drive robot so that it naturally rotates as it executes planned

paths. Once any drone comes within close proximity of its
chosen frontier, it will blacklist that frontier in its memory
and choose the next closest one. Only the leader drone has
the benefit of blacklisting frontiers that it cannot reach, as
its path-planning node will give up or flag that it is stuck.

For the following simulation results (which continue onto
next page), note that the simulations were not run to 100%
completion due to computational limits.

(a) (b)

Fig. 5: (a) Initial position of drones in simple Gazebo world,
(b) Drones spread out to local minima

Fig. 6: The drone velocities near equilibrium. In the previous
images, "quadrotor" is the middle drone, and "uav2" is the
left drone. The oscillation is due to the fact that the robots
are being repelled back and forth between obstacles and each
other.



(a) (b)

Fig. 7: (a) Initial drone maps overlain. The drones are in
the simple Gazebo world with two additional obstacles. (b)
Intermediate maps overlain. The colored dots represent the
trooper frontiers, the arrow represents the target pose of
the leader’s frontier, and the thick green line represents the
leader’s planned path. At this instance, the dots are closest to
their respective trooper, and one trooper is actively avoiding
the leader while the other is avoiding an obstacle.

(a)

(b)

Fig. 8: (a) and (b) are views of the complex Gazebo world

(a)

(b)

(c)

Fig. 9: (a), (b), and (c) are the intermediate 3D map recon-
structions collected by the swarm in the complex Gazebo
world



V. CONCLUSION
It was found that the trooper drones move to frontiers

much quicker than the leader drone since potential fields
are computationally inexpensive compared to classic path-
planning algorithms, whereas the leader drone captures more
camera angles by rotating more and gets stuck less than the
troopers because it is unaffected by local minima. Therefore,
the swarm can balance the trade-offs of each type of drone.
Because control is decentralized, it is easy to see that
a swarm can capture much more information about the
environment than any individual drone can in the same period
of time.

Overall, our approach and implementation is effective in
comprehensively mapping and exploring an unknown area,
which would be useful for search and rescue operations
where the more information the better. In the future, we
would like to optimize the potential field parameters, as the
trooper drones occasionally bump into obstacles. Further-
more, we would like to test with a larger number of drones,
more realistic environments, and longer run-times, given we
get access to more computational power.

REFERENCES

[1] Khatib, O. (1986). The potential field approach and operational space
formulation in robot control. In Adaptive and Learning Systems:
Theory and Applications (pp. 367-377). Boston, MA: Springer US.

[2] Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem. In Distributed autonomous
robotic systems 5 (pp. 299-308). Springer Japan.

[3] Chaimowicz, L., Michael, N., & Kumar, V. (2005, April). Controlling
swarms of robots using interpolated implicit functions. In Proceedings
of the 2005 IEEE international conference on robotics and automation
(pp. 2487-2492). IEEE.

[4] Renzaglia, A., & Martinelli, A. (2010, July). Potential field based
approach for coordinate exploration with a multi-robot team. In 2010
IEEE Safety Security and Rescue Robotics (pp. 1-6). IEEE.

[5] Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics.
[6] M. Labbé and F. Michaud, “RTAB-Map as an Open-Source Lidar

and Visual SLAM Library for Large-Scale and Long-Term Online
Operation,” in Journal of Field Robotics, vol. 36, no. 2, pp. 416–446,
2019.

[7] Moroni, J (2018) mapping_3d/worlds [Source code].
https://github.com/jacobmoroni/mapping_3d/tree/master/worlds

[8] Juarez, A (2021) hector-quadrotor-noetic [Source code].
https://github.com/RAFALAMAO/hector-quadrotor-noetic

[9] Lu, David et al. (2009) navigation [Source code].
https://github.com/ros-planning/navigation?tab=readme-ov-file

[10] Umari, H & Velumani, D (2016) rrt_exploration [Source code].
https://github.com/hasauino/rrt_exploration

APPENDIX I
TEAM MEMBER CONTRIBUTIONS

1) Anaam Mostafiz: Sections I, II and IV
2) Harshil Shah: Section III
3) Siddharth Jain: Sections II and IV
4) Tabsheer Askari: Sections I, II and III

APPENDIX II
VIDEOS OF SIMULATIONS

Robots spreading out in Python:
https://drive.google.com/file/d/

1dd6xoDiMtKmY93a9LqRK7mUUfND8doxy/view?
usp=sharing

Drones spreading out in Gazebo:
https://drive.google.com/file/d/

1OwcF2zFqYdAnUZkI6iUcYlcgCGoIcM2l/view?
usp=sharing

Drones exploring in Gazebo:
https://drive.google.com/file/d/

1ryf6GDeg-YkeXwkHBgh_mtcz-Zo9TiP5/view?
usp=sharing

APPENDIX III
CODE FOR SIMULATIONS

Our Github repository containing all project code and files:
https://github.com/tellsiddh/

ros-multirobot-search-rescue

https://drive.google.com/file/d/1dd6xoDiMtKmY93a9LqRK7mUUfND8doxy/view?usp=sharing
https://drive.google.com/file/d/1dd6xoDiMtKmY93a9LqRK7mUUfND8doxy/view?usp=sharing
https://drive.google.com/file/d/1dd6xoDiMtKmY93a9LqRK7mUUfND8doxy/view?usp=sharing
https://drive.google.com/file/d/1OwcF2zFqYdAnUZkI6iUcYlcgCGoIcM2l/view?usp=sharing
https://drive.google.com/file/d/1OwcF2zFqYdAnUZkI6iUcYlcgCGoIcM2l/view?usp=sharing
https://drive.google.com/file/d/1OwcF2zFqYdAnUZkI6iUcYlcgCGoIcM2l/view?usp=sharing
https://drive.google.com/file/d/1ryf6GDeg-YkeXwkHBgh_mtcz-Zo9TiP5/view?usp=sharing
https://drive.google.com/file/d/1ryf6GDeg-YkeXwkHBgh_mtcz-Zo9TiP5/view?usp=sharing
https://drive.google.com/file/d/1ryf6GDeg-YkeXwkHBgh_mtcz-Zo9TiP5/view?usp=sharing
https://github.com/tellsiddh/ros-multirobot-search-rescue
https://github.com/tellsiddh/ros-multirobot-search-rescue

	INTRODUCTION
	Motivation
	Related Works
	Our Proposed Solution

	MATHEMATICAL MODEL
	Problem Formulation
	Leader Robot
	Trooper Robots Model
	Repulsive Potential
	Attractive Potential

	Assumptions and Constraints

	THEORETICAL ANALYSIS
	System Convergence
	Robots Trapped in Local Minima

	VALIDATION IN SIMULATIONS
	Python
	Gazebo

	CONCLUSION
	References
	Appendix I: Team Member Contributions
	Appendix II: Videos of Simulations
	Appendix III: Code for Simulations

